
SPEAM User Manual: Purpose, Description, and User Instructions
Klaus Hofmann & Nikolaus Ritt, University of Vienna

(funded by the Jubilee Fund of the City of Vienna, Grant No. JF_2021-03_SPEAM)

SPEAM Version: 1.0 Beta (2023/10/13)

Version of the Manual: 1.0 (2023/10/13)

Contents:
Introduction and Rationale 1

Structure 8

Running the simulation 8

Introduction and Rationale

SPEAM is an agent-based simulation programme written in R. It allows researchers to pursue

the question whether the distribution and the development of lexical stress patterns in a

language may be explained as a function of eurhythmic preferences/constraints at the

phrase/utterance level.

The basic idea is this: words with lexically assigned stress patterns combine to form utterances.

These utterances are sensitive to preferences for speech to be rhythmical, and the sequences

of stressed and unstressed syllables that arise when words combine may satisfy these

preferences to a larger or to a lesser extent. When they satisfy them well, the lexical stress

patterns carried by the words combined in this way are reinforced or entrenched. When they fail

to satisfy them, they are destabilized and the probability that the words may adopt an alternative

stress pattern increases. Thus, the lexicon winds up with a distribution of stress patterns whose

combined expression in utterances satisfy rhythmic preferences sufficiently well more often than

not, on average. This means that rhythmic preferences that apply in utterances are (at least part

of) the reason why the lexical stress patterns of words are as they are.

1



This hypothesis differs in important ways from the established practice of accounting for word

stress in terms of generalizations relating it to the syllabic structure of words as well as their

syntactic class membership. The idea behind such approaches is that children acquiring a

language abduce these generalizations from the evidence they are exposed to and learn to

apply them when assigning word stress in their phonological grammars. It predicts that

languages should have learnable and consistent stress rule systems, possibly with a relatively

small set of exceptions. In contrast, the hypothesis that SPEAM is designed to investigate is that

learners learn how often stress patterns help to produce rhythmically preferable utterance

sequences and retain those patterns that, when combined in phrases, produce the preferable

sequences more often than not. It does not rule out the possibility that words of the same

syllabic structure and the same syntactic category should wind up with different stress patterns,

reflecting the probability of these patterns to produce rhythmically well-formed utterances when

combined with one another. Instead, it has the potential of predicting under what circumstances

such stress pattern diversity is likely to establish itself in a language.

What makes that hypothesis interesting but at the same time difficult to assess is that word

stress patterns cannot be assumed to reflect the effect of rhythmically based preferences

directly. Instead, it needs to be taken into account that the impact of these preferences is

mediated by the rhythmic contexts in which words come to be placed in when they combine with

one another in actual utterances. When two words occur near each other, both of them affect

the rhythmicality of the arising sequence, and how they do depends on how well their stress

patterns fit together.

Consider, for example, the widely recognized preference for stressed and unstressed syllables

to alternate. In a phrase like seꞌvere de ꞌpression, the iambic pattern of seꞌvere works well, but in

seꞌvere ꞌheadache it produces a clash with the first syllable of ꞌheadache. Since the ways in

which words are combined are diverse, it is not straightforward to compute how their

interactions with one another under constraints on rhythmicality should affect their stress

patterns. In order to even only see what the hypothesis would predict, one does not only need

know what types of rhythm one assumes to be preferred, and how strongly, but one also needs

to know in what combinations words will occur, and how often. Only then can one try to

calculate what types of stress patterns should - under the specific conditions - come to be

stablized in the lexicon and in what proportions, and only then can one begin to check if the

predicted correlations between the relative frequencies of phrase types one the one hand, and

2



the relative frequencies of stress patterns in the lexicon, match those that can be observed in

actual human languages. The purpose of SPEAM is to help with that task.

SPEAM is an agent based simulation, which models a population of word types (i.e. a lexicon)

and the evolution of their stress patterns under rhythmically grounded constraints on the

phrases they build. The lexicon it simulates consists of monosyllabic, disyllabic, and trisyllabic

words, which can be nouns, adjectives, or verbs. The ‘agents’ in the simulation are the

polysyllabic words, because only polysyllabic words have a choice regarding their stress

pattern. The simulation allows them to choose any of the logically possible stress patterns they

can take: i.e. disyllables may be stressed on the first or the last syllable, while trisyllables can be

stressed on any of their three syllables. Also, each syllable may be either light or heavy

(allowing four combinations for disyllables, and eight for trisyllables). The proportions of nouns,

adjectives, and verbs, as well as the initial proportions of stress patterns and syllable weights,

can be set separately for each run, so that different linguistic scenarios may be simulated.

In each round of the simulation, two poysyllabic words (i.e. two agents) with their specific stress

patterns are chosen (with a probability that reflects the frequency of their type) to combine with

one another and to form a phrase. In that phrase the two words may either follow one another

immediately, or may have monosyllabic items between them. As pointed out, these

monosyllabic items do not represent agents themselves, because, having only one syllable,

they have no choice as far as their stress patterns are concerned. Thus, their role in the

simulation is reduced to representing the diversity of contexts in which poysyllabic ‘agents’ may

come to co-occur. Between each two polysyllabic agents, SPEAM allows up to two

monosyllables, each of which may either carry stress (i.e. simulate a major class word), or not

(i.e. simulate a function word). Just as the initial composition of the lexicon, (i.e. the proportion

of disyllabic or trisyllabic nouns, verbs, or adjectives with different types of stress patterns), also

the relative probability of zero, one, or two monosyllables to occur between polysyllabic agents

can be set separately for each run, and each part-of-speech (so that one take into account, for

example, that adjectives may be more likely than verbs to occur immediately before nouns,

because noun phrases following verbs may often begin with an unstressed determiner).

Once a phrase is formed, its rhythmic quality evaluated and the participating word types receive

feedback in terms of effects on their relative ‘fitness’. In SPEAM, the ‘fitness’ of a word with a

specific stress pattern is expressed as number between zero and one, which represents the

3



relative frequency of the type in the lexicon and determines its likelihood of being used (i.e. of

being selected in the simulation).The fitness of a word gets increased (by a determinable

amount) whenever it is selected for ‘use’. The rhythmic evaluation of the phrase it helps to build

then adjusts that ‘reward’ by subtracting a certain percentage for any deviation from rhythmic

perfection. Thus, the relative fitness (or proportional frequency) of word types and their stress

patterns changes as the simulation unfolds.

Crucially, SPEAM makes it possible to specify a variety of different assumptions about what

constitutes optimal or suboptimal rhythmic sequences, and thereby allows one to investigate

what kind of stress pattern distributions these assumptions predict for the type of language one

decides to model. More specifically, SPEAM allows one to determine the assumed impact of two

primary and two secondary factors.

The first primary factor whose impact SPEAM allows one to model is the widely recognized

preference for stressed and unstressed syllables to alternate with one another strictly

(sometimes referred to as a preference for feet to be binary, c.f. the OT constrain FOOTBIN).

Thus, any deviation from strict alternation (i.e. any sequence of stressed syllables (i.e. any

‘clash’) - or unstressed ones (i.e. any ‘lapse’) subtracts from the well-formedness of a phrase,

and reduces the fitness of the involved stress patterns. The second major factor SPEAM takes

into account, is the preference for stressed syllables to be heavy and for unstressed ones to be

light (often referred to as the Weight-to-Stress principle, or ‘WSP’). Basically, the fitness of

polysyllabic items in a phrase incurs a reduction for any stressed syllable that is light, and for

any unstressed one that is heavy. The relative penalty a phrase (and the polysyllabic agents in

it) incurs for clashes and lapses on the one hand, and violations of the weight-to-stress principle

on the other can be set in the simulation (even though in the present version of SPEAM, it is not

possible to eliminate the effects of both constraints altogether at the same time. Instead, for the

time being, one can manipulate only their relative effect - for more information, see below).

The first secondary factor that SPEAM incorporates reflects the potential impact of a preference

for prominence peaks to occur at regular time intervals (sometimes referred to as a preference

for isochronous feet). Since prominence peaks usually fall between the onset and the nucleus of

a syllable, a stress clash between two syllables may count as less severe if the first syllable is

heavy than if it is light, because a heavy rhyme will increase the time span between the two

neighbouring stress peaks. By the same rationale, a lapse may count as relatively less severe, if

4



the syllables separating two stress peaks are light rather than heavy. - The other secondary

factor takes the possibility into account that sequences of three stressed or unstressed syllables

(i.e. double clashes or double lapses) may be rhythmically ‘repaired’ by promoting or demoting

the one in the middle. Thus, in the famous line Shall I compare thee to a summer’s day, the

sequence of three unstressed function words thee to a is ‘repaired’ by promoting the thee to a

stress peak, yielding the perfectly imabic line Shall ꞌI com ꞌpare thee ꞌto a ꞌsummer’s ꞌday.

Likewise, in the line When I have seen by Time’s fell hand defaced, the double clash in can be

repaired by demoting fell, once again yielding perfectly iambic When ꞌI have ꞌseen by ꞌTime’s

fell ꞌhand de ꞌfaced. SPEAM allows one to model the assumed impact of both of these

secondary factors on the rhythmicality of phrases, and thereby on the effects it has on the

fitness of the stress patterns involved in it.

Finally, SPEAM also allows one to determine how the feedback incurred from the rhythmic

quality of a phrase is distributed between the two polysyllables involved in building the phrase.

This possibility is built into the simulation because one cannot be certain - a priori - that it will be

distributed equally, and there reasons to suspect that it is not. In English, for example, potential

stress clashes in phrases such as Prin ꞌcess ꞌMary, or Ho ꞌtel ꞌCali ꞌfornia, are typically

‘repaired’ by shifting the stress in the first word backwards, yielding ꞌPrincess ꞌMary, And ꞌHo

tel ꞌCali ꞌfornia, respectively.

Thus, SPEAM allows one to set (and thereby to control for) two different sets of independent

variables that may affect the fitness (or the relative frequency) of word stress patterns in the

lexicon of a language. On the one hand, these are the factors that determine the likelihood of

polysyllabic items to co-occur in different types of phrasal constellations. They reflect the

composition of the lexicon (i.e. the number of mono- and polysyllabic nouns, verbs and

adjectives, and the number of unstressed function words), as well as any assumptions one

wants to make about syntactically conditioned probabilities of their co-occurence. On the other

hand, SPEAM allows one to incorporate one’s estimates concerning the potential effects of a

variety of constraints grounded in rhythmical preferences.

Once one has set the initial parameters in a way that strikes one as plausible or theoretically

interesting, one can also decide the number of rounds, or ‘generations’, for which one would like

the simulation to run, as well the number of times one wants it to run. Then SPEAM runs.

5



How does SPEAM report the results of a run? Basically, it produces a set of huge tables (the

number depends on how many runs one has ordered) in plain text format (labelled ‘1.txt’

through ‘n.txt’), where columns represent all of the 96 possible types of part-of-speech and

stress-pattern combinations and where rows represent the proportions of the lexicon they

constitute after each round of the simulation. The number of rows (=rounds) depends on one’s

settings. Table (1) below represents a small section of such a table for the sake of illustration.

Table (1)

The number of times SPEAM should run the simulation can also be set. When SPEAM is asked

to run more than once, it produces a corresponding number of output files, which are likely to

differ from one another, because SPEAM also incorporates an element of randomness. In cases

of multiple runs, SPEAM also produces an output file named ‘average.txt’, which averages over

the outputs of all individual runs. While it may be useful to look at that average in cases where

individual runs produce only slightly different outputs, it can be utterly misleading when they

don’t. This means that it is necessary to inspect individual outputs in order to assess how

seriously the average can be taken.

From the information contained in the output tables it is possible to derive trajectories

representing the relative frequencies of all stress pattern types among polysyllabic nouns,

verbs, and adjectives as they are likely to evolve under the initial parameters settings that one

has chosen. Since these are difficult to interprete when they are represented as huge lists of

numbers, SPEAM calculates these trajectories automatically and (b) produces a number of plots

representing them, such as the ones in (1) and (2) below:

6



(1) Distribution of stress patterns among di- and trisyllabic nouns, verbs and adjectives:

(2) Distribution of syllable weights among stress pattern types:

An alternative way of producing visualisations is by means of Excel-Book templates that are

provided as addenda to SPEAM. In order to use them, all one needs to do is copy and paste the

contents of any of the result files (i.e., ‘1.txt’, … ‘n.txt’, ‘or ‘average.txt’) into the sheet labelled

‘Import’ that the Excel-Book templates contain, pointing to the upper left corner of the sheet. The

rest happens automatically.

Thus, SPEAM can show - in the form of fairly comprehensible graphic representations - what

the hypothesis that the distribution of word stress patterns in a lexicon is determined by

constraints on the rhythmicality of utterances would actually predict, given one’s specific

7



assumptions about these constraints, and given language specific probabilities of different

(syntactically conditioned) types of word sequneces to occur.

The following, more technical parts of this manual, explain the basic design of the simulation, as

well as the way in which initial parameters can be set for different runs.

Structure

The programme consists of several sub-scripts which refer to one another. The individual scripts

reflect the division into several functional elements of the programme (parameter input, payoff

table generation, simulation, output generation and saving, graph generation) and primarily

serve convenience of coding. For running the simulation, the individual sub-scripts are

immaterial.

In its present version SPEAM involves the following subscripts. The one that needs to be

opened when wanting to run SPEAM is the one labelled “SPEAM_input_console.R”. How

parameters can be set in it, is explained below.

(Note: the only other file one might want to open is the one labelled “SPEAM_plot.R”. By default it is set

to plot the average outcome of a number of runs. If you want to plot individual runs, you need to search

for “average” and replace it with the appropriate number, i.e., “1” though “n”, depending.)

Running the simulation

Currently (Sept. 2023), the simulation does not feature a graphical user interface (GUI). This

means that the user has to enter various parameters directly into the R script before the

programme can be executed. However, this only involves manipulation of the sub-script called

“SPEAM_input_console.txt”. The remaining sub-scripts need not - and should not - be modified.

8



In the sub-script “SPEAM_input_console.txt”, various input and interaction parameters can be

modified to investigate their effect on stress pattern evolution according to the rhythmic context

hypothesis as described above. The individual parameters are described below:

1) Set working directory
setwd(“”):

Enter path to directory where all subscripts and relevant input files (see below) are

located. By default, the working directory is set to the location of the source file of

“SPEAM_input_console.txt”.

2) Rhythmic contexts
The distributions of rhythmic contexts, which in the model act as a selective pressure for

the evolution of lexical stress patterns, can be provided in various forms (i.e. a-c below),

differing with regard to the granularity of the available input information. For example, if

an external file is provided (cf. options a-b below), the distribution of parts-of-speech in

the contexts may be specified independently, while if the proportions of context types are

entered manually (cf. option c below), the parts-of-speech will be divided up equally

across context types.

a) ctxt.data.path:

Fill with path to provide a set of coded concordances (i.e. corpus concordances

annotated for rhythmic prominence; for exact format, see example file

“ctxt.data.input.txt”). The relevant context distributions are calculated

automatically from this input set. Leave empty string (= “”) to select input options

b) or c).

b) ctxt.frq.path:

Fill with filename to provide the distributions of contexts in a tabled format (i.e.

context types with FRQ of occurrence; for exact format, see example file

“ctxt.frq.input.txt”). - Leave string empty (= “”) to select input options a) or c).

c) ctxt_1 … ctxt_7:

Each line stands for one of 7 possible rhythmic context types. The value provided

for each represents its share in the total distribution of context types.

Fill each context type with a value {0, 1}, such that the sum over all context types

sum(ctxt_1, … ctxt_7) is exactly 1. If individual context types are left empty, the

9



context types have the occurrence probability of 0.0, which means that they do

not exist in the simulation.

3) Lexicon (Agents).
The distributions of lexical types, which in the model act as agents selecting from among

a number of possible stress patterns, may be provided in various forms (i.e. a-b below),

differing in the amount of granularity of input information provided. For example, if a path

is selected (option a), parts-of-speech proportions can be specified independently for

each syllable count, while if proportions of nouns, verbs, disyllables etc. are specified

manually (option b), this is not possible.

a) lex.path:

Fill with path (and filename) to provide a lexicon with all relevant attributes filled

(e.g. as modeled on corpus data). Leave empty to select input option b).

b) Enter values for lexical type attributes (PoS, SyllNo, StrPat, Weight)

● pN: Proportion of nouns in the lexicon.

● pV: Proportion of verbs in the lexicon. Proportion of adjectives is

automatically calculated as the difference between 1 and the sum over

the proportions of nouns and verbs (i.e. 1 - sum(pN, pV)).

● p2S: Proportion of disyllables in the lexicon. Proportion of trisyllables

(p3S) is automatically calculated as the difference between 1 and the

proportion of disyllables (i.e. 1 - p2S).

● pSW: Initial proportion of left-strong patterns (‘trochaic stress’) in the

lexicon, which is subject to change in the simulation. Proportion of

right-strong patterns (‘iambic stress’) is automatically calculated as the

difference between 1 and the proportion of left-strong patterns (i.e. 1 -

pSW).

● pWWS: Initial proportion of right-strong trisyllabic patterns (‘ultimate

stress’) in the lexicon, which is subject to change in the simulation.

● pWSW: Initial proportion of medially strong trisyllabic patterns

(‘penultimate stress’) in the lexicon, which is subject to change in the

simulation. Proportion of left-strong trisyllabic patterns (‘ante-penultimate

stress’’) is automatically calculated as the difference between 1 and the

and the sum over the proportions of right-strong and medially strong

patterns (i.e. 1 - sum(pWWS, pWSW)).

10



● p2Wght: Initial distribution of syllable weight types across disyllables (LL,

HL, LH, HH), which is subject to change in the simulation. Sum over

values needs to be <= 1, where proportion of type HH is difference btw. 1

and sum over proportions of all other weight types (i.e. HH = 1 - sum(LL,

HL, LH)).

● p3Wght: Initial distribution of syllable weight types across trisyllables (LLL,

HLL, LHL, HHL, LLH, HLH, LHH, HHH), which is subject to change in the

simulation. Sum over values needs to be <= 1, where proportion of type

HHH is difference btw. 1 and sum over proportions of all other weight

types (i.e. HHH = 1 - sum(LLL, HLL, LHL, HHL, LLH, HLH, LHH)).

4) Interaction parameters
a) General parameters:

○ phi: Basic increment φ, which is manipulated by all subsequent interaction

parameters. If all other parameters are set to neutral, the fitness attribute

in the agents participating in one round will maximally be augmented by

φ. If φ is set too high, simulation will fluctuate too much for interactions to

have discernible effect; if set too low, the effect may not become visible

before a very large number of rounds have passed. Also, the value for φ

and the values for noise/jit need to be co-adjusted, such that any

randomness introduced by the latter does not outweigh the effect of the

former. A value for φ ≈ 0.015 and jitter ≈ 0.0005 have proven functional.

These values are set as defaults.

○ payoff-ratio: The parameter payoff-ratio controls the relative impact of the

payoff garnered through the evaluation of rhythmic interactions (including

all interactions parameters above) vs. the payoff garnered through the

evaluation of word-level weight attributes (weight-to-stress). Payoff from

weight evaluation is highest when stress falls on heavy syllables while

light syllables are unstressed. Weight-to-stress is evaluated separately

from rhythmic well-formedness. If set to 0.5, both payoff mechanisms

contribute equally to the final payoff garnered by an agent, i.e. the

parameter is effectively neutralized. If set to 0, only word-level weight

evaluation contributes to the final payoff and rhythmic well-formedness is

disregarded. If set to 1, only rhythmic well-formedness contributes to the

final payoff and word-level weight attributes are disregarded.

11



○ mult: The parameter mult controls how relatively damaging more than one

violation against weight-to-stress is compared to one violation.

○ noise: The parameter noise is the first of two parameters that can be used

to introduce some degree of randomness into the process. Noise does so

by selecting an agent with random configuration of attributes, irrespective

of the FRQ attribute of that agent type. This mirrors ‘random mutations’ in

a population of agents. The parameter takes values ranging from 0 to 1. If

set to 0, random agents are never selected, if set to 1, random agents are

always selected.

○ jit.fct: The parameter jitter.factor is the second of two parameters that can

be used to introduce some degree of randomness into the process. Jitter

factor does so by altering the FRQ attribute of all agent types after each

round by a random factor. The parameter takes values ranging from 0 to

1. If set to 0, the FRQ attribute is left unaltered. The size of the impact of

jitter.factor on the process critically depends on the size of phi, i.e. the

basic increment. A value for φ ≈ 0.015 and jitter ≈ 0.0005 have proven

functional. These values are set as defaults.

○ nTimes: The parameter nTimes determines the number of iterations a

simulation is set to run through. If set too small, the simulation may not

run long enough for the system to settle into a stable state.

○ para.sample: The parameter para.sample determines the number of

simulations that will be run. Depending on the values given to the input

parameters (for contexts, interactions, …) the simulations will run on the

same parameter configuration or assume a different parameter

configuration (within a pre-specified range of values) for each run of the

simulation.

b) Interaction parameters:

Interaction parameters control the amount of payoff distributed to agents.

○ alpha: The parameter α controls how much of any positive payoff

generated will be distributed to each of the two agents participating in an

interaction. If set to 0.5, the payoff is distributed equally between the

agents, if set to 1, Player 1 receives all of the payoff, if set to 0, Player 2

receives all of the payoff.

12



○ rho: The parameter ρ controls the degree to which repaired violations

(e.g. SSS > SwS) are penalized relative to non-repairable violations (e.g.

SWSSW). If set to ⅔, payoff is distributed equally to agents participating

in interactions with repaired or non-repairable violations. This reflects the

fact that repairable violations always involve two violations at a time (e.g.

SSS consists of two consecutive instances of SS). If set to 1, only agents

in interactions with non-repairable violations receive payoff, if set to 0,

only agents in interactions with repaired violations receive payoff.

○ lambda: The parameter λ controls the degree to which lapses (i.e. WW)

count as less (or possibly more) detrimental violations than clashes (i.e.

SS). If set to 0.5, payoff is distributed equally to agents participating in

interactions with clashes or lapses, i.e. the parameter is effectively

neutralized. If set to 0, agents in interactions with lapses will receive the

maximal allocable, while agents in interactions with clashes will not

receive any payoff. If set to 1, agents in interactions with clashes will

receive the maximal allocable payoff, while agents in interactions with

lapses will not receive any payoff.

○ omega: The parameter ω controls the degree to which syllable weight

factors into the evaluation of clashes (i.e. SS). Weight-optimal clashes are

clashes in which the first clashing syllable is heavy (i.e. SHS) under the

assumption that such a configuration promotes isochrony and is therefore

rhythmically preferred. If set to 0.5, payoff is distributed equally to agents

participating in interactions with weight-optimal and weight-suboptimal

clashes, i.e. the parameter is effectively neutralized. If set to 0, agents in

interactions with weight-optimal clashes will receive the maximal allocable

payoff, while agents in interactions with weight-suboptimal clashes will not

receive any payoff. If set to 1, agents in interactions with

weight-suboptimal clashes will receive the maximal allocable payoff, while

agents in interactions with weight-optimal clashes will not receive any

payoff.

○ omicron: The parameter ο controls the degree to which syllable weight

factors into the evaluation of lapses (i.e. WW). Weight-optimal lapses are

lapses in which both lapsing syllables are light (i.e. WLWL) under the

assumption that such a configuration promotes isochrony and is therefore

13



rhythmically preferred. If set to 0.5, payoff is distributed equally to agents

participating in interactions with weight-optimal and weight-suboptimal

lapses, i.e. the parameter is effectively neutralized. If set to 0, agents in

interactions with weight-optimal lapses will receive the maximal allocable

payoff, while agents in interactions with weight-suboptimal lapses will not

receive any payoff. If set to 1, agents in interactions with

weight-suboptimal lapses will receive the maximal allocable payoff, while

agents in interactions with weight-optimal lapses will not receive any

payoff.

○ gamma: The parameter γ controls the degree to which syllable weight

factors into the evaluation of repaired clashes, i.e. demotions (SSS >

SwS). Weight-optimal demotions are demotions in which the demoted

syllable is light (i.e. SwLS) under the assumption that heavy syllables

carry intrinsic prominence and are therefore less likely to become

demoted. If set to 0.5, payoff is distributed equally to agents participating

in interactions with weight-optimal and weight-suboptimal demotions, i.e.

the parameter is effectively neutralized. If set to 0, agents in interactions

with weight-optimal demotions will receive the maximal allocable payoff,

while agents in interactions with weight-suboptimal demotions will not

receive any payoff. If set to 1, agents in interactions with

weight-suboptimal demotions will receive the maximal allocable payoff,

while agents in interactions with weight-optimal demotions will not receive

any payoff.

○ epsilon: The parameter ε controls the degree to which syllable weight

factors into the evaluation of repaired lapses, i.e. promotions (WWW >

WsW). Weight-optimal promotions are promotions in which the promoted

syllable is heavy (i.e. WSHW) under the assumption that heavy syllables

carry intrinsic prominence and are therefore more likely to become

promoted. If set to 0.5, payoff is distributed equally to agents participating

in interactions with weight-optimal and weight-suboptimal promotions, i.e.

the parameter is effectively neutralized. If set to 0, agents in interactions

with weight-optimal promotions will receive the maximal allocable payoff,

while agents in interactions with weight-suboptimal promotions will not

receive any payoff. If set to 1, agents in interactions with

14



weight-suboptimal promotions will receive the maximal allocable payoff,

while agents in interactions with weight-optimal promotions will not

receive any payoff.

15


